Publish papers in recent 5 years

1          Li, S. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng, doi:10.1038/s41551-020-00675-9 (2021).

2          Shi, Z., Gao, H., Bai, X. C. & Yu, H. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science 368, 1454-1459, doi:10.1126/science.abb0981 (2020).

3          Park, J. et al. Structure of human GABA(B) receptor in an inactive state. Nature 584, 304-309, doi:10.1038/s41586-020-2452-0 (2020).

4          Li, F. et al. Cryo-EM structure of VASH1-SVBP bound to microtubules. eLife 9, doi:10.7554/eLife.58157 (2020).

5          Kim, Y. & Yu, H. Shaping of the 3D genome by the ATPase machine cohesin. Exp Mol Med 52, 1891-1897, doi:10.1038/s12276-020-00526-2 (2020).

6          Hall, C., Yu, H. & Choi, E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 52, 911-920, doi:10.1038/s12276-020-0456-3 (2020).

7          Yang, H. et al. Mps1 regulates spindle morphology through MCRS1 to promote chromosome alignment. Molecular biology of the cell 30, 1060-1068, doi:10.1091/mbc.E18-09-0546 (2019).

8          Uchikawa, E., Choi, E., Shang, G., Yu, H. & Bai, X. C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. eLife 8, doi:10.7554/eLife.48630 (2019).

9          Li, J., Choi, E., Yu, H. & Bai, X. C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature communications 10, 4567, doi:10.1038/s41467-019-12564-0 (2019).

10         Li, F., Raczynska, J. E., Chen, Z. & Yu, H. Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan. Cell reports 26, 3336-3346.e3334, doi:10.1016/j.celrep.2019.02.082 (2019).

11         Li, F., Hu, Y., Qi, S., Luo, X. & Yu, H. Structural basis of tubulin detyrosination by vasohibins. Nature structural & molecular biology 26, 583-591, doi:10.1038/s41594-019-0242-x (2019).

12         Kopp, F. et al. PUMILIO hyperactivity drives premature aging of Norad-deficient mice. eLife 8, doi:10.7554/eLife.42650 (2019).

13         Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345-1349, doi:10.1126/science.aaz4475 (2019).

14         Choi, E. et al. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nature communications 10, 1473, doi:10.1038/s41467-019-09318-3 (2019).

15         Zheng, G. & Yu, H. Cyclin A Turns on Bora to Light the Path to Mitosis. Dev Cell 45, 542-543, doi:10.1016/j.devcel.2018.05.017 (2018).

16         Zheng, G., Kanchwala, M., Xing, C. & Yu, H. MCM2-7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 7, doi:10.7554/eLife.33920 (2018).

17         Yang, Y. & Yu, H. Partner switching for Ran during the mitosis dance. Journal of molecular cell biology 10, 89-90, doi:10.1093/jmcb/mjx048 (2018).

18         Yang, Y. & Yu, H. CENP-T bears the load in mitosis. Nature cell biology 20, 1335-1337, doi:10.1038/s41556-018-0241-x (2018).

19         Petela, N. J. et al. Scc2 Is a Potent Activator of Cohesin’s ATPase that Promotes Loading by Binding Scc1 without Pds5. Molecular cell 70, 1134-1148.e1137, doi:10.1016/j.molcel.2018.05.022 (2018).

20         Li, F. et al. The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Molecular cell 70, 395-407.e394, doi:10.1016/j.molcel.2018.03.032 (2018).

21         Lee, H. S. et al. The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. Nature communications 9, 3848, doi:10.1038/s41467-018-06377-w (2018).

22         Lee, C. C., Li, B., Yu, H. & Matunis, M. J. Sumoylation promotes optimal APC/C Activation and Timely Anaphase. eLife 7, doi:10.7554/eLife.29539 (2018).

23         Lee, C. C., Li, B., Yu, H. & Matunis, M. J. A Method for SUMO Modification of Proteins in vitro. Bio Protoc 8, doi:10.21769/BioProtoc.3033 (2018).

24         Cortone, G. et al. Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS genetics 14, e1007622, doi:10.1371/journal.pgen.1007622 (2018).

25         Choi, E. & Yu, H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 6, 161, doi:10.3389/fcell.2018.00161 (2018).

26         Zheng, G., Ouyang, Z. & Yu, H. Biochemical and Functional Assays of Human Cohesin-Releasing Factor Wapl. Methods in molecular biology 1515, 37-53, doi:10.1007/978-1-4939-6545-8_3 (2017).

27         Zhang, Q. et al. Ska3 Phosphorylated by Cdk1 Binds Ndc80 and Recruits Ska to Kinetochores to Promote Mitotic Progression. Current biology : CB 27, 1477-1484.e1474, doi:10.1016/j.cub.2017.03.060 (2017).

28         Soardi, F. C. et al. Familial STAG2 germline mutation defines a new human cohesinopathy. NPJ Genom Med 2, 7, doi:10.1038/s41525-017-0009-4 (2017).

29         Palozola, K. C. et al. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119-122, doi:10.1126/science.aal4671 (2017).

30         Ouyang, Z. & Yu, H. Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl. Bioessays 39, doi:10.1002/bies.201600207 (2017).

31         Ji, Z., Gao, H., Jia, L., Li, B. & Yu, H. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 6, doi:10.7554/eLife.22513 (2017).

32         Brulotte, M. L. et al. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nature communications 8, 1956, doi:10.1038/s41467-017-02012-2 (2017).

33         Sivakumar, S. et al. The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. eLife 5, doi:10.7554/eLife.12902 (2016).

34         Rong, Z., Ouyang, Z., Magin, R. S., Marmorstein, R. & Yu, H. Opposing Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid Cohesion. J Biol Chem 291, 19079-19091, doi:10.1074/jbc.M116.737585 (2016).

35         Ouyang, Z., Zheng, G., Tomchick, D. R., Luo, X. & Yu, H. Structural Basis and IP6 Requirement for Pds5-Dependent Cohesin Dynamics. Molecular cell 62, 248-259, doi:10.1016/j.molcel.2016.02.033 (2016).

36         Lin, Z., Luo, X. & Yu, H. Structural basis of cohesin cleavage by separase. Nature 532, 131-134, doi:10.1038/nature17402 (2016).

37         Kikuchi, S., Borek, D. M., Otwinowski, Z., Tomchick, D. R. & Yu, H. Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy. Proceedings of the National Academy of Sciences of the United States of America 113, 12444-12449, doi:10.1073/pnas.1611333113 (2016).

38         Choi, E., Zhang, X., Xing, C. & Yu, H. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis. Cell 166, 567-581, doi:10.1016/j.cell.2016.05.074 (2016).